تجزیه و تحلیل و مدل سازی اطلاعات مکانی جهت طبقه بندی تصاویر ابرطیفی

thesis
abstract

کم بودن تعداد نمونه های آموزشی نسبت به تعداد باندهای تصویر یک مشکل اساسی طبقه بندی داده های ابرطیفی، می باشد. در این تحقیق با ترکیب دو رویه طبقه بندی طیفی -مکانی، یکی بر اساس استفاده از ناحیه بندی به منظور تعریف همسایگی وفقی برای هر پیکسل و دیگری بر پایه استفاده از مدل mrf مبتنی بر پنجره ثابت، مشکل محدود بودن تعداد نمونه های آموزشی در طبقه بندی تصاویر ابرطیفی، تعدیل یافته است. در ابتدا روشی کارا برای احتمالاتی کردن خروجی طبقه بند svm معرفی می گردد. این احتمال‏های کلاس بدست آمده در قاعده پیشنهادی رأی گیری اکثریت مطمئن (cmv) جهت ترکیب نتایج ناحیه بندی و طبقه بندی احتمالاتی ابتدایی استفاده می شوند. نتایج طبقه-بندی دو تصویر واقعی aviris و rosis نشان می دهد که این قاعده صحت طبقه بندی را به ترتیب 77/5 و 07/6 درصد در مقایسه با قاعده سنتی رأی گیری اکثریت (mv)، بهبود می دهد. در رویه ای دیگر، برچسب پیکسل های نامطمئن (پیکسل های مرزی) نقشه طبقه بندی ابتدایی، با استفاده از مدل svm-mrf اصلاح می شوند. این روش پیشنهادی نیز علاوه بر بهبود صحت میانگین، در مقایسه با روش سنتی svm-mrf که بر روی کل تصویر اعمال می شود، صحت طبقه بندی را برای تصاویر aviris و rosis، به ترتیب 40/2 و 54/7 درصد با زمان پردازش به مراتب کمتر بهبود می دهد. صحت نهایی طبقه بندی دو تصویر aviris و rosis با استفاده از این روش ترکیبی، به ترتیب 11/89 و 09/96 درصد است که نشان می دهد بر خلاف اغلب روش های پیشنهاد شده پیشین که هر پیکسل را به تنهایی و بدون در نظر گرفتن اطلاعات ساختارهای مکانی پردازش می کنند، الگوریتم طیفی-مکانی پیشنهادی با نمونه های آموزشی کم می تواند طبقه‏بندی مطلوبی را انجام دهد.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

بهبود طبقه بندی طیفی-مکانی تصاویر ابرطیفی با به کارگیری اطلاعات مکانی در انتخاب نشانه ها

فنآوری سنجش از دور ابرطیفی دارای کاربردهای فراوان در طبقه‌ بندی پوشش‌ های زمین و بررسی تغییرات آنها است. معمولترین روش جهت طبقهبندی تصاویر ابرطیفی، طبقه‌ بندی مبتنی بر پیکسل بوده که در آن هر پیکسل فقط با اطلاعات طیفی خود و بدون در نظر گرفتن پیکسل های همسایه، به کلاس مشخصی اختصاص می‌ یابد. پیشرفتهای اخیر و ایجاد تصاویری با قدرت تفکیک مکا...

full text

تاثیر انتخاب ویژگی به کمک الگوریتم ژنتیک بر طبقه بندی طیفی مکانی تصاویر ابرطیفی

فن‌آوری سنجش از دور ابرطیفی دارای کاربردهای فراوان در طبقه­بندی پوشش‌های زمین و بررسی تغییرات آنها می‌باشد. با پیشرفت‌های اخیر و ایجاد تصاویری با قدرت تفکیک مکانی بالا، لزوم استفاده توام از اطلاعات طیفی و مکانی را در طبقه­ بندی تصاویر ابرطیفی ایجاب می‌کند. در این تحقیق سعی می‌گردد تاثیر کاهش ابعاد به کمک الگوریتم ژنتیک را در فرآیند طبقه­ بندی طیفی-مکانی تصاویر ابرطیفی بررسی شود. در میان الگوریت...

full text

تاثیر انتخاب ویژگی به کمک الگوریتم ژنتیک بر طبقه بندی طیفی مکانی تصاویر ابرطیفی

فن آوری سنجش از دور ابرطیفی دارای کاربردهای فراوان در طبقه­بندی پوشش های زمین و بررسی تغییرات آنها می باشد. با پیشرفت های اخیر و ایجاد تصاویری با قدرت تفکیک مکانی بالا، لزوم استفاده توام از اطلاعات طیفی و مکانی را در طبقه­ بندی تصاویر ابرطیفی ایجاب می کند. در این تحقیق سعی می گردد تاثیر کاهش ابعاد به کمک الگوریتم ژنتیک را در فرآیند طبقه­ بندی طیفی-مکانی تصاویر ابرطیفی بررسی شود. در میان الگوریت...

full text

فشرده سازی تصاویر ابرطیفی با استفاده از اطلاعات مکانی

نظریه ی جدید نمونه برداری فشرده این امکان را فراهم می کند که اطلاعات از ابتدا به صورت فشرده دریافت شود. به عبارتی امکان دریافت و فشرده سازی سیگنال های تنک را به صورت هم زمان و بهینه فراهم می آورد که عبارت تنکی به معنای داشتن تعداد مقادیر غیر صفر کم می باشد. با بهره-گیری از همبستگی طیفی و مکانی بین باندها و پیکسل های تصاویر ابرطیفی تئوری نمونه برداری فشرده را انجام می دهیم.

توسعه و ارزیابی یک الگوریتم کاهش نوفه به منظور بهبود کارایی و دقت طبقه بندی تصاویر ابرطیفی

تصویربرداری ابرطیفی، به عنوان یکی از فنآوری‎های نوین سنجش از دوری، منبع ارزشمندی برای کاربردهای مختلف علوم زمین، از جمله تهیه نقشه­های پوششی، شناسایی و اکتشاف معادن، نظارت زیست­محیطی به شمار می‌رود. با این وجود، به دلایل سخت افزاری و فنآوری این داده‏ها دارای مشکلات ذاتی هستند. از آنجایی که بهبود سیستم سخت افزاری سنجنده‌های ابرطیفی بسیار پرهزینه است، روش‌های سنجش از دوری پردازش تصویر مانند کاهش ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت مدرس

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023